# Focused Opportunity for Solar Orbiter (FOSO) Mission



**Presentation at Pre-proposal Conference for SMEX/FOSO** 

Madhulika Guhathakurta /Dana Brewer LWS Program Scientist/Program Executive November 6, 2007, Washington, DC

### **FOSO History**

- Formation of International Living with a Star (ILWS) working group in 2001, to promote interagency cooperation/collaboration in the area of Sun-Solar System Connection/Heliophysics) missions.
- ESA Solar Orbiter Science Requirements Document was released in March, 2005,.
- NASA LWS/Solar Sentinels Science and Technology Definition Team Report was released in August, 2006.
- Early in 2007, ESA and NASA combined Solar Sentinels and Solar Orbiter into a single joint collaboration because of the synergy of the two missions.
  - A joint STDT (JSTDT) was formed and charged with prioritizing the science goals for the joint collaboration.
  - The JSTDT renamed the merged missions as the HELiophysical EXplorers (HELEX) mission.
  - The JSDT released its final report on October 5, 2007
- ESA released its Solar Orbiter AO on October 18, 2007
- NASA released FOSO as an addendum to the SMEX AO on October 22, 2007.

# Primary FOSO Objective and HELEX Science Questions

### **Primary FOSO objective:**

- Solicit science investigations for the Solar Orbiter mission
  - Solar Orbiter is one component of the HELEX collaboration that will explore the near-Sun environment

### **Three top HELEX science questions:**

- 1. What are the origins of the solar wind streams and the heliospheric magnetic field?
- 2. What are the sources, acceleration mechanisms, and transport processes of solar energetic particles?
- 3. How do coronal mass ejections evolve in the inner heliosphere?

## **FOSO Solicitation for Proposals**

- Proposals for science investigations that address high priority science objectives for Solar Orbiter <u>as defined in the HELEX JSTDT report are</u> <u>solicited</u>
  - Several questions were submitted regarding the order of precedence for the science, requirements, and instruments
    - Order of precedence (highest to lowest):
      - FOSO
      - HELEX JSTDT Report
      - Solar Orbiter documentation from the European Space Agency
- Proposals for investigations are in two categories:
  - Instrument investigations: NASA funds an investigation that has a <u>NASA-funded Principal Investigator (PI) leading</u> the development of the instrument suite;
    - A wide angle coronagraph/ heliospheric imager to link the in situ Solar Sentinels observations to the environment of the inner heliosphere is one of the instrument investigations being solicited
  - Sensor investigations: NASA funds an investigation that has a NASA-funded PI providing a sensor for an <u>ESA-led</u> instrument suite

## **FOSO AO Highlights**

- FOSO was released as an amendment to SMEX AO
  - The FOSO amendment describes exceptions to the processes used in the SMEX AO
- The candidate instruments in the model payload are examples and do not exclude other instruments.
- Joint ESA-NASA accommodation analysis will occur after categorization
- Payload selection will be made in coordination with ESA
- Proposals to this AO are expected to be selected through a single-step process
  - No competitive Phase A; Initial Confirmation Review instead of competition
- As a guideline, the total value of all investigations selected for Phase A study through end of Phase E is approximately \$65 M in Real Year dollars
  - SMEX uses FY 2008 dollars

## **FOSO AO Highlights (Continued)**

- NASA may designate one or more FOSO investigations as unfunded backups until all selected FOSO investigations pass or fail Initial Confirmation Reviews to enter Phase B
  - Failure of a funded investigation to be confirmed to proceed to Phase B may provide an opportunity for an unfunded backup to enter Phase B.
- Spacecraft resources -- mass, power, footprint, etc. -- are provided as <u>guidelines</u> (not requirements) in the ESA Solar Orbiter Payload Definition Document and the Experiment Interface Definition-A
  - Sensor investigations (ESA-led instruments) should fit within the resource allocations for the ESA-led instrument
- Questions from the community and responses are being posted in the FOSO section of the SMEX web site as Frequently Asked Questions (FAQ)

## FOSO Requirement: No Joint Designs with Non-U.S. Partners

### What is a "joint design"?

- A "joint design" is a situation where there is not a clean interface and an identifiable U.S. deliverable depends upon design information from a non-U.S. partner
  - Example of a joint design: A U.S. investigator provides flight software to a non-U.S. hardware provider; the software provider requires significant interaction and exchange of design details with the non-U.S. provider to complete the U.S. deliverable.
- The "what" that is being provided requires more than interface definition and control documentation
  - It also requires the definition and exchange of "how" the design is executed on both sides of the interface
  - The lack of a clean interface (or "joint design") involves the exchange of design details that may not be allowed by International Traffic in Arms Regulations or Export Administration Regulations

#### What is not a "joint design"?

- An instrument design that includes contributions of flight hardware/software subsystems from U.S. and European co-Investigators where <u>clean</u> interfaces exist
  - A data acceptance package can be delivered when the instrument or sensor is delivered and the deliverable did not have to pass through customs several times before being delivered

## **Comparison of SMEX and FOSO Opportunities**

| Category                  | SMEX               | FOSO                                            |
|---------------------------|--------------------|-------------------------------------------------|
| Phase A                   | Competitive        | Not competitive but Initial Confirmation Review |
|                           |                    | with funded awardees contributing to project    |
|                           |                    | documentation                                   |
| Costing                   | FY 2008 Fixed Year | Real Year Dollars                               |
|                           | Dollars            |                                                 |
| Science                   | Open               | Focused on Solar Orbiter as defined in the      |
|                           |                    | FOSO and HELEX JSTDT Report                     |
| Instruments               | Open; per          | Must fit within resource constraints of Solar   |
|                           | proposal           | Orbiter                                         |
| Risk Category             | D                  | C                                               |
| Mission Assurance         | SMEX MAR           | RBSP MAR                                        |
| Requirements              |                    |                                                 |
| Integration               | As proposed in AO  | U.Sinstrument integration in U.S.; integration  |
|                           |                    | of sensors to European-led instruments funded   |
|                           |                    | by Europe; integration of instruments to        |
|                           |                    | spacecraft funded by ESA                        |
| <b>Mission Operations</b> | As proposed in AO  | Funded by Europe; Science Operations for U.S    |
|                           |                    | led instrument(s) funded by FOSO proposal       |

### **SMEX FOSO 2007 Proposal Evaluation Process**



## **Proposal Evaluation Criteria for FOSO**

- Evaluation & categorization using same process as for SMEX (section 8.1):
  - Scientific merit; scientific implementation merit; and, technical, management, and cost feasibility, including cost risk, of the proposed investigation
- Additional FOSO evaluation factors for FOSO only:
  - Science: The extent to which the proposed investigation addresses high priority science objectives, as defined in the HELEX JSTDT report
  - Science implementation: The extent to which the proposed instruments and sensors are compatible with the Solar Orbiter design
  - Science implementation: The maturity of the design or the demonstration of a clean path to achieve the necessary TRL on the schedule given in FOSO
  - Technical, management, and cost feasibility:
    - The extent to which the proposed instruments and sensors can be achieved within the resources available to Solar Orbiter instruments
    - Demonstration of a realistic plan to carry out all of the management responsibilities
    - Demonstration of a thorough understanding of the accommodation and environmental challenges for the Solar Orbiter mission; and
    - Demonstration of a realistic cost and adequate reserves for all phases of the investigation.

## **Technical & Scientific Inquiries**

 All technical & scientific enquiries concerning the FOSO should be directed to:

Dr. Madhulika Guhathakurta

NASA LWS/Solar Orbiter Program Scientist

Science Mission Directorate, NASA Headquarters

Washington, DC 20546, USA

Telephone: 202 358 1992

E-mail: madhulika.guhathakurta@nasa.gov